Exercise 57

Show that the curve $y=2 e^{x}+3 x+5 x^{3}$ has no tangent line with slope 2 .

Solution

Take the derivative of the given function and show that it cannot equal 2 for any value of x.

$$
\begin{aligned}
y^{\prime} & =\frac{d}{d x}\left(2 e^{x}+3 x+5 x^{3}\right) \\
& =\frac{d}{d x}\left(2 e^{x}\right)+\frac{d}{d x}(3 x)+\frac{d}{d x}\left(5 x^{3}\right) \\
& =2 \frac{d}{d x}\left(e^{x}\right)+3 \frac{d}{d x}(x)+5 \frac{d}{d x}\left(x^{3}\right) \\
& =2\left(e^{x}\right)+3(1)+5\left(3 x^{2}\right) \\
& =2 e^{x}+3+15 x^{2}
\end{aligned}
$$

Set this equal to 2 and solve for x.

$$
\begin{gathered}
2 e^{x}+3+15 x^{2}=2 \\
2 e^{x}+15 x^{2}=-1
\end{gathered}
$$

The left side is strictly positive because $e^{x}>0$ and $x^{2} \geq 0$, so it can never be equal to -1 for any value of x. Therefore, the curve $y=2 e^{x}+3 x+5 x^{3}$ has no tangent line with slope 2 .

